
ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-5736: Reconfigurable Computing Summer I 2020

1 Instructor: Daniel Llamocca

Homework 2
(Due date: May 26th)

Presentation and clarity are very important! Show your procedure!

PROBLEM 1 (30 PTS)
▪ AXI4-Lite interface for Pipelined 2D convolution kernel (N=3, B=C=8):

✓ The I/O timing diagram of the pipelined 2D convolutional kernel is shown below.

 Input data: 0xA1B2C3D4F0E1D2C3B3. This data is captured when E is asserted.

 Output data: 0x2B282. It appears after the processing delay (6 clock cycles) with v=1.

✓ Complete the timing diagram for the AXI4-Lite Interface: Given the AXI signals for the 5 Channels, complete the signals
associated with the Pipelined 2D Convolution Kernel block (E, v, y, F, FQ signals) on the next page.

S_AXI_AWADDR

S_AXI_AWVALID

S_AXI_AWREADY

S_AXI_WDATA

S_AXI_WSTRB

S_AXI_WVALID

S_AXI_WREADY

S_AXI_BRESP

S_AXI_BVALID

S_AXI_BREADY

4

32

4

S_AXI_ARADDR

S_AXI_ARVALID

S_AXI_ARREADY

S_AXI_RDATA

S_AXI_RRESP

S_AXI_RVALID

S_AXI_RREADY

2

4

32

S_AXI_ACLK

Slave
Registers

E

axi_awaddr(3..2)

Conv. Kernel

v
E

H

D F

FSM

slv_reg_wren

S1

1

FSM @ S_AXI_ACLK

S_AXI_ARESETN=0

slv _reg_wren 0

S2

0

slv _reg_wren
1

S_AXI_ARESETN

0

E

B=C=8
3x 3

S
la

v
e

R
e
g
is

te
r
3

sl
v
_
re

g
_
rd

e
n

a
x
i_

a
ra

d
d
r(

3
..

2
)

=10

E

E

0

1

2

=01 =00

32

32

72

E

=1132 8

3

E

K=2 K K+1

K 0

S4

v

no

yes

72

02 0B 02

05 0E 05

02 0B 02

1 0

E  1

S3

FQ
20 21

S_AXI_ACLK

E

v

F

D 00000

00000 02B82

A1B2C3D4F0E1D2C3B3

Latency = 6 cy cles

resetn

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-5736: Reconfigurable Computing Summer I 2020

2 Instructor: Daniel Llamocca

0
0
1
0
2
B
8
2

F
0
E
1
D
2
C
3

0
0
0
0
0
0
B
3

A
C
L
K

A
W
V
A
L
I
D

A
W
A
D
D
R

0

A
W
R
E
A
D
Y

W
D
A
T
A

A
1
B
2
C
3
D
4

W
V
A
L
I
D

W
R
E
A
D
Y

O
K

B
R
E
S
P

B
V
A
L
I
D

B
R
E
A
D
Y

WRITE ADDRESS
CHANNEL

WRITE DATA
CHANNEL

WRITE RESPONSE
CHANNEL

slv
_
re

g
_
w

re
n

4
8

O
K

O
K

y E

S
1

A
R
V
A
L
I
D

A
R
A
D
D
R

A
R
R
E
A
D
Y

R
D
A
T
A

R
V
A
L
I
D

R
R
E
A
D
Y

R
R
E
S
P

READ ADDRESS
CHANNEL

READ DATA
CHANNEL

O
K

C

vF
Q

0
0
0
0
0
0

F
0
0
0
0
0

C

O
K

0
0
0
0
0
0
0
0

slv
_
re

g
_
rd

e
n

myconv2_ip

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-5736: Reconfigurable Computing Summer I 2020

3 Instructor: Daniel Llamocca

PROBLEM 2 (35 PTS)
▪ AXI4-Lite interface for Iterative Divider (N=24, M=24):

✓ Sketch the AXI4-Lite Interface. This includes the Slave Registers, their control signals, as well as the extra glue logic
(registers, FSM, etc.) to connect the Iterative Divider to the Slave Register signals.
 Slave Registers: Use as many as you need, indicating their number. The latched addresses depicted

(axi_awaddr[3..2], axi_araddr[3..2]) support up to 4 registers. If for example, you need more registers (say up to 8),

you would need axi_awaddr[4..2], axi_araddr[4..2].

 The start signal s should not be generated via software, rather it should be issued by an FSM once the input data has

been received. Sketch the FSM diagram (in ASM form) as well.

PROBLEM 3 (35 PTS)
▪ Calculate the result of the following operations. The operands are signed (2C) fixed-point numbers. The result must be a

signed fixed-point number. For the division, use x=5 fractional bits.

 1.101001 +

 1.0001

 1001.1101 -

 1.010101

 0.01001 +

 01.11011

 0.10011 
 10.101

 1.011 
 1.0011

 01.01110 
 1.011

▪ Represent these numbers in Fixed Point Arithmetic (signed numbers). Use the FX format [16 8]. (5 pts)

✓ -32.1875

✓ 123.3125

axi_awaddr(3..2)

S_AXI_AWADDR

S_AXI_AWVALID

S_AXI_AWREADY

S_AXI_WDATA

S_AXI_WSTRB

S_AXI_WVALID

S_AXI_WREADY

S_AXI_BRESP

S_AXI_BVALID

S_AXI_BREADY

4

32

4

S_AXI_ARADDR

S_AXI_ARVALID

S_AXI_ARREADY

S_AXI_RDATA

S_AXI_RRESP

S_AXI_RVALID

S_AXI_RREADY

2

4

32

S_AXI_ACLK

sl
v
_
re

g
_
rd

e
n

a
x
i_

a
ra

d
d
r(

3
..

2
)

ITERATIVE DIVIDER

done

A

B

Q

R

S_AXI_ARESETN

resetn

24

24

FSM

slv_reg_wren

s

24

24

