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1 Instructor: Daniel Llamocca 

Homework 2 
(Due date: May 26th) 

Presentation and clarity are very important! Show your procedure! 

 

PROBLEM 1 (30 PTS) 
▪ AXI4-Lite interface for Pipelined 2D convolution kernel (N=3, B=C=8): 

✓ The I/O timing diagram of the pipelined 2D convolutional kernel is shown below. 

 Input data: 0xA1B2C3D4F0E1D2C3B3. This data is captured when E is asserted. 

 Output data: 0x2B282. It appears after the processing delay (6 clock cycles) with v=1. 

✓ Complete the timing diagram for the AXI4-Lite Interface: Given the AXI signals for the 5 Channels, complete the signals 
associated with the Pipelined 2D Convolution Kernel block (E, v, y, F, FQ signals) on the next page. 
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PROBLEM 2 (35 PTS) 
▪ AXI4-Lite interface for Iterative Divider (N=24, M=24):  

✓ Sketch the AXI4-Lite Interface. This includes the Slave Registers, their control signals, as well as the extra glue logic 
(registers, FSM, etc.) to connect the Iterative Divider to the Slave Register signals.  
 Slave Registers: Use as many as you need, indicating their number. The latched addresses depicted 

(axi_awaddr[3..2], axi_araddr[3..2]) support up to 4 registers. If for example, you need more registers (say up to 8), 

you would need axi_awaddr[4..2], axi_araddr[4..2]. 

 The start signal s should not be generated via software, rather it should be issued by an FSM once the input data has 

been received. Sketch the FSM diagram (in ASM form) as well. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

PROBLEM 3 (35 PTS) 
▪ Calculate the result of the following operations. The operands are signed (2C) fixed-point numbers. The result must be a 

signed fixed-point number. For the division, use x=5 fractional bits. 
 

        1.101001 + 

          1.0001 

      1001.1101 - 

       1.010101 

       0.01001 + 

      01.11011          

         0.10011  
          10.101          

          1.011  
         1.0011          

      01.01110  
         1.011          

 
▪ Represent these numbers in Fixed Point Arithmetic (signed numbers). Use the FX format [16 8]. (5 pts) 
 

✓ -32.1875 
 

✓ 123.3125 
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